Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1067). Services for accessing these data are described at the back of the journal.

References

Bentele, H. J., Sünkel, K. \& Beck. W. (1997). Chem. Ber. 130, 14751477.

Chiaroni, A.. Riche. C., El Firdoussi, L.., Benharref, A. \& Karim, A. (1993). Acta Crist. C49, 365-368.

Cotoon. F. A. (1990). Chemical Applications of Group Theory, 3rd ed.. pp. 247-249. New York: Wiley Interscience.
El Firdoussi, L.. Allaoud. S., Karim, A., Barrero, A. F., Quirós, M.. Castanet, Y. \& Mortreux, A. (1997). Acta Cryst. C53. 710-712.
Flack. H. D. (1983). Acta Cryst. A39, 876-881.
Oike, H., Kai, Y.. Miki, K.. Tanaka, N. \& Kasai, N. (1987). Bull. Chem. Soc. Jpn. 60, 1993-1999.
Sardone, N., Seresini, P. \& Zecchi, G. (1996). Acta Cryst. C52, 613615.

Sheldrick. G. M. (1994). SHELXTLIPC. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Solladie-Cavallo, A. (1989). Adrances in Metalorganic Chemistry. Vol. 1. pp. 99-133. London: JAI Press.
Stoe \& Cie (1996a). STADI4. Diffractometer Control Program. Version 1.06. Stoc \& Cic, Darmstadt, Germany.
Stoe \& Cie (1996b). X-RED. Data Reduction Program. Version 1.08. Stoc \& Cie, Darmstadt, Germany.

Acta Cryst. (1999). C55, 363-365

(Z)- and (E)-1-methylthio-1-triphenyl-stannyl-2-phenylethene

Clemens Bruhn, ${ }^{\text {a }}$ Dirk Steinborn, ${ }^{"}$ Tomáš Lébi. ${ }^{b}$ and Jaroslav Holeček ${ }^{b}$
"Institut für Anorganische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle (Saale), Germany, and ${ }^{b}$ Department of General and Inorganic Chemistry, University of Pardubice, Cs. legii 565, CZ-532I0 Pardubice, Czech Republic. E-mail: bruhn@chemie.uni-halle.de

(Received 17 September 1998; accepled 19 November 1998)

Abstract

The structures of the title compounds, (Z) $-\mathrm{Ph}_{3} \mathrm{Sn}$ $\mathrm{C}(\mathrm{SMe})=\mathrm{CHPh}$, (I), and $(E)-\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{C}(\mathrm{SMe})=\mathrm{CHPh}$, (II) $\left\{\right.$ both $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~S}\right)\right.$], (1-methylthio-2-phenylethenyl)triphenyltin\}, were determined by single-crystal X-ray diffraction at room temperature. Both structures consist of discrete molecules in which the Sn atom is tetrahedrally coordinated by three phenyl groups and one 1-methylthio-2-phenylethenyl group. The planar ethenyl skeleton forms angles of 58.9 (2) and 34.0 (3) ${ }^{\circ}$ with the 2-phenyl substituent in (I) and (II), respectively, excluding π interactions between them. In Z-isomer (I),

the methyl substituent on sulfur lies in the plane of the ethenyl group [torsion angle $\mathrm{C}-\mathrm{S}-\mathrm{C}=\mathrm{C} 3.0(5)^{\circ}$], but this is not the case in E-isomer (II), which reveals a torsion angle $\mathrm{C}-\mathrm{S}-\mathrm{C}=\mathrm{C}$ of $156.1(8)^{\circ}$.

Comment

The hydrometallation of non-symmetrically substituted alkynes can afford four possible isomeric ethenyl metal complexes. Especially in the case of alkynes $R^{\prime} \mathrm{C} \equiv \mathrm{C} Y R_{n}$ with Lewis basic heteroatom groups $\left(Y R_{n}=\right.$ $\mathrm{N} R_{2}, \mathrm{P} R_{2}, \mathrm{O} R, \mathrm{~S} R ; R / R^{\prime}=$ alkyl, aryl, H), it might be difficult to predict the regio- and/or stereoselectivity. In the case of the hydrostannylation of $\mathrm{PhC} \equiv \mathrm{CSPh}$ by $\mathrm{Ph}_{3} \mathrm{SnH}$, both the non-catalysed and the Pd-catalysed reactions are quite selective and yield one major isomer at about $90-95 \%$ in each case. Because the assignment of the isomers by means of NMR spectroscopy $\left({ }^{1} \mathrm{H},{ }^{1.3} \mathrm{C}\right.$ and $\left.{ }^{119} \mathrm{Sn}\right)$ is not straightforward, the structures of both isomers were determined by single-crystal X-ray diffraction. The non-catalysed reaction gave (Z) $\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{C}(\mathrm{SMe})=\mathrm{CHPh}$, (I), and the Pd-catalysed reaction $(E)-\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{C}(\mathrm{SMe})=\mathrm{CHPh}$, (II).

(I)

(II)

The molecular structures and numbering schemes are shown in Fig. 1. Both complexes consist of discrete molecules in which the Sn atoms are tetrahedrally coordinated by three phenyl ligands and one 1-methylthio-2-phenylethenyl ligand $[\mathrm{C}-\mathrm{Sn}-\mathrm{C}$: $106.3(1)-112.7(1)^{\circ}$ in (I) and $105.6(3)-110.0(3)^{\circ}$ in (II)]. The three $\mathrm{Sn}-\mathrm{C}_{\mathrm{Ph}}$ bond lengths are similar [(I): 2.131 (4)-2.143 (4), mean value $2.135 \AA$; (II): 2.135 (8)2.162 (8), mean value $2.146 \AA$]. In the case of isomer (I), the $\mathrm{Sn}-\mathrm{C}_{\text {ethenyl }}$ bond seems to be slightly longer [(I): 2.173 (4); (II): 2.148 (7) Å]. There are no significant differences in the $\mathrm{Sn}-\mathrm{C}$ bond lengths in $\mathrm{Ph}_{3} \mathrm{Sn}-$ $\mathrm{CH}=\mathrm{CH}_{2} \quad\left[\mathrm{Sn}-\mathrm{C}_{\mathrm{Ph}} 2.11\right.$ (3)-2.17(4) and $\mathrm{Sn}-\mathrm{C}_{\text {ethenyl }}$ 2.07 (3)-2.15 (3) \AA; Theobald \& Trimaille, 1984] and $(Z)-\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{C}\left(\mathrm{CMe}_{2} \mathrm{OH}\right)=\mathrm{CHMe}\left[\mathrm{Sn}-\mathrm{C}_{\mathrm{Ph}} 2.118\right.$ (3)2.129 (3) and $\mathrm{Sn}-\mathrm{C}_{\text {ethenyl }} 2.125$ (3) \AA; Willem et al., 1994].

The ethenyl skeleton ($\mathrm{Cl}-\mathrm{C} 3, \mathrm{Sn}, \mathrm{S}$) is nearly planar [maximum deviation: 0.064 (3) \AA for C 2 in (I), and 0.027 (6) \AA for Cl in (II)]. As in trans-[Pt $\{(E)-\mathrm{C}-$ $\left.(\mathrm{SMe})=\mathrm{CHPh}\} \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Steinborn et al., 1998), in Z-isomer (I), the methyl substituent on sulfur (C9) also lies in this plane [deviation $0.011(8) \AA$; torsion angle $\mathrm{C} 9-\mathrm{S}-\mathrm{Cl}=\mathrm{C} 23.0(5)^{\circ}$; this is not the case in E-isomer (II) [deviation 0.73 (2) \AA; torsion angle $\left.\mathrm{C} 9-\mathrm{S}-\mathrm{Cl}=\mathrm{C} 2 \quad 156.1(8)^{\circ}\right]$. Without obvious reason, the angles at the ethenyl C 1 and C 2 atoms exhibit

Fig. 1. The molecular structures of (a) Z-isomer (I) and (b) E-isomer (II) showing 30% probability displacement ellipsoids. H atoms are shown as circles of an arbitrary radius.
distinct deviations from the ideal angle of 120° expected for $s p^{2}$-hybridized C atoms [111.6(2)-126.6(4) ${ }^{\circ}$ for (I) and $117.6(5)-130.0(7)^{\circ}$ for (II)]. The interplanar angles of 58.9 (2) and $34.0(3)^{\circ}$ between the 2-phenyl substituent (C3-C8) and the ethenyl group in (I) and (II), respectively, exclude π interactions.

The closest $\mathrm{C}_{\mathrm{Ph}}-\mathrm{H} \cdots \mathrm{S}$ distance is intermolecular in (I) $\left[\mathrm{C} 26 \cdots \mathrm{~S}^{\mathrm{i}} 3.594\right.$ (7) and H26 \cdots S $2.79 \AA$; symmetry code: (i) $1+x, y, z]$ and intramolecular in (II) [C4 \cdots S 3.125 (10) and $\mathrm{H} 4 \cdots \mathrm{~S} 2.63 \AA$].

Experimental

(Z) $-\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{C}(\mathrm{SMe})=\mathrm{CHPh}$, (I), was synthesized by the reaction of stoichiometric amounts of $\mathrm{Ph}_{3} \mathrm{SnH}$ and $\mathrm{PhC} \equiv \mathrm{CSMe}$ in n-hexane at 328 K under anaerobic conditions. After 5 h , the precipitate was filtered, washed with hexane and dried in vacuo (yield: 69%; m.p. 379 K). Crystals suitable for X-ray diffraction studies were obtained from chloroform $/ n$-pentane solution. $(E)-\mathrm{Ph}_{3} \mathrm{Sn}-\mathrm{C}(\mathrm{SMe})=\mathrm{CHPh}$, (II), was obtained using an analogous reaction in THF at 243 K in the presence of $1 \mathrm{~mol} \%$ $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$. After 15 min , the solvent was removed in vacuo affording an oily residue (purity: 95\%). Crystals (m.p. 341343 K) suitable for X-ray diffraction studies separated after standing for several weeks at 288 K .

Compound (I) - \boldsymbol{Z} isomer

Crystal data
[$\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~S}\right)$]
$M_{r}=499.21$
Monoclinic
$P 2_{1} / c$
$a=10.190(9) \AA$
$b=19.104$ (9) \AA
$c=12.808$ (9) \AA
$\beta=110.67(6)^{\circ}$
$V=2333(3) \AA^{3}$
$Z=4$
$D_{x}=1.421 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 four-circle diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
semi-empirical via ψ scan
(North et al., 1968)
$T_{\text {min }}=0.45, T_{\text {max }}=0.62$ 6742 measured reflections 4101 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.098$
$S=1.160$
4100 reflections
289 parameters
Only H-atom U 's refined
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.144 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.402 \mathrm{e}^{-3}$

Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 32 reflections
$\theta=5.23-16.73^{\circ}$
$\mu=1.195 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block
$0.8 \times 0.6 \times 0.4 \mathrm{~mm}$ Colourless

3750 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.109$
$\theta_{\text {max }}=25^{\circ}$
$h=-12 \rightarrow 12$
$k=0 \rightarrow 23$
$l=-15 \rightarrow 15$
1 standard reflection frequency: 60 min intensity decay: none $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0414 P)^{2}\right.$

Table 1. Selected geometric parameters $\left({ }^{(},^{\circ}\right)$ for (I)

$\mathrm{C} 1-\mathrm{C} 2$	$1.331(5)$	$\mathrm{C} 10-\mathrm{Sn}$	$2.143(4)$
$\mathrm{C} 1-\mathrm{S}$	$1.740(4)$	$\mathrm{C} 16-\mathrm{Sn}$	$2.131(4)$
$\mathrm{C} 1-\mathrm{Sn}$	$2.173(4)$	$\mathrm{C} 22-\mathrm{Sn}$	$2.133(4)$
$\mathrm{C} 9-\mathrm{S}$	$1.789(5)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S}$	$123.7(3)$	$\mathrm{C} 16-\mathrm{Sn}-\mathrm{C} 10$	$106.28(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Sn}$	$124.6(3)$	$\mathrm{C} 22-\mathrm{Sn}-\mathrm{C} 10$	$106.7(2)$
$\mathrm{S}-\mathrm{Cl}-\mathrm{Sn}$	$111.6(2)$	$\mathrm{C} 16-\mathrm{Sn}-\mathrm{Cl}$	$111.34(13)$

$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$126.6(4)$	$\mathrm{C} 22-\mathrm{Sn}-\mathrm{Cl}$
$\mathrm{Cl}-\mathrm{S}-\mathrm{C} 9$	$105.1(2)$	$\mathrm{C} 10-\mathrm{Sn}-\mathrm{Cl}$
$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C} 22$	$111.57(14)$	

112.74 (14)
107.9 (2)

Compound (II) - E isomer

Crystal data
$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~S}\right)\right.$]
$M_{r}=499.21$
Triclinic
$P \overline{1}$
$a=9.5512(8) \AA$
$b=11.0433(8) \AA$ 。
$c=12.3793(10) \AA$
$\alpha=83.380(8)^{\circ}$
$\beta=81.737(8)^{\circ}$
$\gamma=67.018(7)^{\circ}$
$V=1187.1$ (2) \AA^{3}
$Z=2$
$D_{x}=1.397 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 four-circle diffractometer
$\omega / 2 \theta$ scans
Absorption correction: semi-empirical via ψ scan
(North et al., 1968)
$T_{\text {min }}=0.62, T_{\text {max }}=0.79$
3732 measured reflections
3732 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 32 reflections
$\theta=10.0-13.5^{\circ}$
$\mu=1.174 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$
Colourless

3070 reflections with

$$
I>2 \sigma(I)
$$

$\theta_{\text {max }}=25^{\circ}$
$h=-11 \rightarrow 8$
$k=-12 \rightarrow 13$
$l=0 \rightarrow 14$
1 standard reflection frequency: 60 min intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.189$
$S=1.239$
3721 reflections
287 parameters
Only H-atom U 's refined
$w=1 /\left[\sigma^{2}\left(F_{\circ}^{2}\right)+(0.1046 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.766 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.841 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.030 (4)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II)

$\mathrm{C} 1-\mathrm{C} 2$	$1.345(11)$	$\mathrm{C} 10-\mathrm{Sn}$	$2.162(8)$
$\mathrm{C} 1-\mathrm{S}$	$1.761(7)$	$\mathrm{C} 16-\mathrm{Sn}$	$2.135(8)$
$\mathrm{Cl}-\mathrm{Sn}$	$2.148(7)$	$\mathrm{C} 22-\mathrm{Sn}$	$2.141(7)$
$\mathrm{C} 9-\mathrm{S}$	$1.769(10)$		
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{S}$	$120.7(6)$	$\mathrm{C} 16-\mathrm{Sn}-\mathrm{Cl}$	$108.1(3)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Sn}$	$117.6(5)$	$\mathrm{C} 22-\mathrm{Sn}-\mathrm{C} 1$	$110.6(3)$
$\mathrm{S}-\mathrm{Cl}-\mathrm{Sn}$	$121.6(4)$	$\mathrm{C} 16-\mathrm{Sn}-\mathrm{Cl0}$	$105.6(3)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$130.0(7)$	$\mathrm{C} 22-\mathrm{Sn}-\mathrm{Cl} 10$	$110.9(3)$
$\mathrm{Cl}-\mathrm{S}-\mathrm{C} 9$	$105.1(5)$	$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C} 10$	$111.6(3)$
$\mathrm{C} 16-\mathrm{Sn}-\mathrm{C} 22$	$110.0(3)$		

For both compounds, data collection: STADI4 (Stoe \& Cie, 1996a); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1996b); program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL93.

Financial support from Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Supplementary data for this paper are available from the $I U C r$ electronic archives (Reference: NA1382). Services for accessing these data are described at the back of the journal.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Steinborn, D., Becke, S., Bruhn, C. \& Heinemann, F. W. (1998). J. Organomet. Chem. 556, 189-196.
Stoe \& Cie (1996a). STADI4. Diffractometer Control Program. Version 1.05c. Stoc \& Cie, Darmstadt, Germany.
Stoe \& Cie (1996b). X-RED. Data Reduction Program. Version 1.05. Stoe \& Cie, Darmstadt, Germany.
Theobald, F. \& Trimaille, B. (1984). J. Organomet. Chem. 267, 143149.

Willem, R., Delmotte, A., De Borger, I., Biesemans, M., Gielen, M., Kayser, F. \& Tiekink, E. R. T. (1994). J. Organomet. Chem. 480, 255-259.

Acta Cryst. (1999). C55, 365-368

A dimeric form of the nickel(II) thiocyanate complex of bis(3-aminopropyl)methylamine

Alok K. Mukherjee, ${ }^{\text {a }}$ Nirmalya P. Nayak, ${ }^{\text {a }}$ Arunendu Mondal ${ }^{b}$ and Nirmalendu Ray Chaudhuri ${ }^{b}$
"Department of Physics, Jadavpur University, Calcutta 700 032, India, and ${ }^{b}$ Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India. E-mail: akm@juphys.ernet.in
(Received 20 May 1998; accepted 2 November 1998)

Abstract

The structure of $\operatorname{bis}[N, N$-bis(3-aminopropyl)methyl-amine]- $1 \kappa^{3} N, 2 \kappa^{3} N$-di- μ-thiocyanato- $1: 2 \kappa^{2} N: S ; 1: 2 \kappa^{2} S: N$ -dithiocyanato- $1 \kappa N, 2 \kappa N$-dinickel(II), $\left[\mathrm{Ni}_{2}(\mathrm{NCS})_{4}\left(\mathrm{C}_{7} \mathrm{H}_{19}-\right.\right.$ $\left.\left.\mathrm{N}_{3}\right)_{2}\right]$ or $\left[\mathrm{Ni}_{2}(\mu-\mathrm{SCN})_{2}(\text { medpt })_{2}(\mathrm{NCS})_{2}\right]$, where medpt is bis(3-aminopropyl)methylamine, consists of two crystallographically independent dimer types differing in their orientations. In each dimer, the two Ni^{11} ions are bridged by two SCN^{-}ligands in an end-to-end fashion. The coordination polyhedra about the Ni^{11} atoms are distorted octahedra consisting of three N atoms of the medpt lig-

